Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
2.
Cancer Sci ; 2022 Sep 26.
Article in English | MEDLINE | ID: covidwho-2236370

ABSTRACT

Antibody persistence several months after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccination in allogeneic stem cell transplantation recipients remains largely unknown. We sequentially evaluated the humoral response to two doses of mRNA vaccines in 128 adult recipients and identified the risk factors involved in a poor response. The median interval between stem cell transplantation and vaccination was 2.7 years. The SARS-CoV-2 S1 Ab became positive after the second vaccination dose in 87.6% of the recipients, and the median titer was 1235.4 arbitrary units (AU)/ml. In patients on corticosteroid treatment, the corticosteroid dose inversely correlated with Ab titer. Multivariate analysis identified risk factors for poor peak response such as an interval from stem cell transplantation ≤1 year, history of clinically significant CMV infection, and use of >5 mg/day prednisolone at vaccination. Six months after vaccination, the median titer decreased to 185.15 AU/ml, and use of >5 mg/day prednisolone at vaccination was significantly associated with a poor response. These results indicate that early vaccination after stem cell transplantation (<12 months) and CMV infection are risk factors for poor peak response, while steroid use is important for a peak as well as a persistent response. In conclusion, although humoral response is observed in many stem cell transplantation recipients after two doses of vaccination, Ab titers diminish with time, and factors associated with persistence and a peak immunity should be considered separately.

3.
Cell Host Microbe ; 29(7): 1124-1136.e11, 2021 07 14.
Article in English | MEDLINE | ID: covidwho-1272337

ABSTRACT

Many SARS-CoV-2 variants with naturally acquired mutations have emerged. These mutations can affect viral properties such as infectivity and immune resistance. Although the sensitivity of naturally occurring SARS-CoV-2 variants to humoral immunity has been investigated, sensitivity to human leukocyte antigen (HLA)-restricted cellular immunity remains largely unexplored. Here, we demonstrate that two recently emerging mutations in the receptor-binding domain of the SARS-CoV-2 spike protein, L452R (in B.1.427/429 and B.1.617) and Y453F (in B.1.1.298), confer escape from HLA-A24-restricted cellular immunity. These mutations reinforce affinity toward the host entry receptor ACE2. Notably, the L452R mutation increases spike stability, viral infectivity, viral fusogenicity, and thereby promotes viral replication. These data suggest that HLA-restricted cellular immunity potentially affects the evolution of viral phenotypes and that a further threat of the SARS-CoV-2 pandemic is escape from cellular immunity.


Subject(s)
COVID-19/virology , Immunity, Cellular , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2 , COVID-19/epidemiology , Genome, Viral , Humans , Mutation , Phylogeny , Protein Binding , Viral Proteins/genetics , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL